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Transitions from health to disease are characterized by dysregu-
lation of biological networks under the influence of genetic and
environmental factors, often over the course of years to decades
before clinical symptoms appear. Understanding these dynamics
has important implications for preventive medicine. However,
progress has been hindered both by the difficulty of identifying
individuals who will eventually go on to develop a particular
disease and by the inaccessibility of most disease-relevant tissues
in living individuals. Here we developed an alternative approach
using polygenic risk scores (PRSs) based on genome-wide associa-
tion studies (GWAS) for 54 diseases and complex traits coupled
with multiomic profiling and found that these PRSs were associ-
ated with 766 detectable alterations in proteomic, metabolomic,
and standard clinical laboratory measurements (clinical labs) from
blood plasma across several thousand mostly healthy individuals.
We recapitulated a variety of known relationships (e.g., glutama-
tergic neurotransmission and inflammation with depression, IL-33
with asthma) and found associations directly suggesting therapeu-
tic strategies (e.g., Ω-6 supplementation and IL-13 inhibition for
amyotrophic lateral sclerosis) and influences on longevity (leuke-
mia inhibitory factor, ceramides). Analytes altered in high-genetic-risk
individuals showed concordant changes in disease cases, supporting
the notion that PRS-associated analytes represent presymptomatic
disease alterations. Our results provide insights into the molecular
pathophysiology of a range of traits and suggest avenues for the
prevention of health-to-disease transitions.
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Inspired by a vision of medicine that is predictive, preventive,
personalized, and participatory (P4) (1), our research group

conducted a pilot 9-mo naturalistic study of 108 individuals
combining whole-genome sequencing with longitudinal multio-
mic data collection (2–4) and targeted behavioral coaching (5).
We furthered this vision by expanding data collection to 4,905
individuals, largely of self-identified white ancestry (3,752 of
4,789, 78.3%) and college-educated (2,543 of 2,812, 90.4%).
We reasoned that individuals at high genetic risk for a trait

would show broad alterations in trait-related analytes (Fig. 1A),
whether as causes or effects of biological changes leading up to
the disease (6–10) or as noncausal proxies for other measured or
unmeasured analytes (11, 12). To explore this hypothesis, we
obtained genome-wide association studies (GWAS) results for
54 diseases/complex traits of broad interest (Fig. 1B and Dataset
S1) from the GWAS catalog (13) and calculated polygenic risk
scores (PRSs) (14) using a standard approach (Dataset S2): fil-
tering variants based on their strength of association with the
trait, then pruning to avoid high linkage disequilibrium between
variants included in the PRS. We correlated all pairs of these
PRSs across the individuals in our cohort and captured many
expected disease relationships (SI Appendix, Fig. S1). We then
performed outlier-robust correlations across self-identified white
individuals (owing to the reduced applicability of PRSs across
ancestries) between each of these 54 PRSs and 274 proteins (n =
2,114 individuals), 713 metabolites (n = 1,518), and 47 clinical

laboratory tests (clinical labs) (n = 3,618), while correcting for
age, sex, US state, weekday, month, season, technical factors,
and outlier analyte levels (Methods).

A Catalog of Analyte–PRS Correlations
We obtained 219 protein–PRS, 259 metabolite–PRS, and 288
clinical lab–PRS correlations at a false discovery rate (FDR) of
10% (Fig. 2A and Dataset S3), for a total of 766 significant
analyte–PRS correlations. Seventy-six percent of these correla-
tions remained at least nominally significant (uncorrected P <
0.05) after excluding self-reported disease cases (where ascer-
tained in our cohort; Dataset S4), suggesting significant corre-
lations are largely (although not exclusively) driven by
dysregulation among healthy or undiagnosed individuals. The
body mass index (BMI) PRS was correlated with the most ana-
lytes (84 proteins, 114 metabolites, and 32 clinical labs), consis-
tent with the large-scale dysregulation induced by obesity (15).
The next two most associated PRSs were for brain-related traits:
educational attainment and depression. The number of variants
in a trait’s PRS did not significantly correlate with its number of
associated analytes (Spearman ρ = 0.03, P = 0.8; SI Appendix,
Fig. S2).
On the whole, plasma metabolites and proteins were associ-

ated with far fewer PRSs than plasma clinical labs (Fig. 2 B and
C and Dataset S5), reflecting decades of development of clinical
analytes for broad use. The most associated protein and metab-
olite, the cytokine IL12B and the diglyceride oleoyl-linoleoyl-glycerol
(18:1/18:2), had only 6 and 5 significant PRS associations, respec-
tively, while the most associated clinical lab, totalΩ-3 abundance, was
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correlated with 21 PRSs (14 positively and 7 negatively), nearly 40%
of those tested. While 98% of clinical labs were significantly associ-
ated with at least 1 of the 54 PRSs, the same was true for only 50% of
proteins and 27% of metabolites. Though potentially attributable in
part to lesser technical variation among clinical labs or the larger

number of individuals with clinical laboratory data, these differences
suggest clinical labs tend to come closer to providing broad-brushed
portraits of overall health (as one would expect), whereas plasma
metabolites and proteins tend to only be associated with a small
subset of traits.

Anthropometric
Birth weight
Body mass index
Height
Waist-to-hip-ratio adjusted for BMI

Autoimmune
Ankylosing spondylitis
Celiac disease
Crohn’s disease
Inflammatory bowel disease
Juvenile idiopathic arthritis
Primary biliary cholangitis
Primary sclerosing cholangitis
Psoriasis
Systemic lupus erythematosus
Type 1 diabetesTT
Ulcerative colitis

Cardiovascular
Atrial fibrillation
Coronary artery disease
Diastolic blood pressure
Stroke
Systolic blood pressure

Cancer
Breast cancer
Prostate cancer

Cognitive
Cognitive performance
Educational attainment
Intelligence

Metabolic
Chronic kidney disease
Gout
Type 2 diabetesTT

Miscellaneous
Glaucoma
Male pattern baldness
Parental extreme longevity

Musculoskeletal
Carpal tunnel syndrome
Heel bone mineral density
Total body bone mineraTT l density

Neurological
Alzheimer’s disease
Amyotrophic lateral sclerosis
Epilepsy
Multiple sclerosis

Other immune
Allergic disease
Asthma
Atopic dermatitis
FEV1

Psychiatric
Anxiety/tension
Bipolar disorder
Depression
Neuroticism
Subjective well-being
Worry

Sleep
Chronotype
Insomnia symptoms
Narcolepsy
Sleep duration
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Fig. 1. Study overview. (Top) Conceptual overview. (Bottom) The 54 traits with polygenic risk scores.

21814 | www.pnas.org/cgi/doi/10.1073/pnas.2001429117 Wainberg et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.2001429117


www.manaraa.com

Crucially, analytes that positively correlated with genetic risk
were highly likely to also be elevated in disease cases, and vice
versa. For 558 (86%) of the 652 significant correlations for

diseases with available case–control status data in our cohort
(Dataset S4), the analyte showed at least small alterations
(Glass’s Δ > 0.05 in magnitude) in disease cases, and for 353
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Fig. 2. Multiomic correlates of genetic risk. (A) Number of significant analytes associated with each PRS, stratified by analyte type. (B) Number of significant
PRSs associated with each analyte, stratified by analyte type. For proteins, INF, CVD2, and CVD3 denote Olink panels. (C) Breakdown of PRS associations across
trait categories for the 10 most associated analytes of each type. (D) Distribution of normalized effect sizes (Glass’s Δ) of analyte abundances between disease
cases and controls, for the 652 significant analyte–PRS correlations for diseases with case–control status ascertained in our cohort, stratified by analyte type.
By convention, effect sizes are multiplied by the sign (+1 or −1) of the analyte–PRS correlation, so that positive effect sizes signify that analyte abundances are
increased in both high-PRS individuals and disease cases, or decreased in both (concordant); negative effect sizes signify increased abundance in high-PRS
individuals and decreased abundance in disease cases, or vice versa (discordant).
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(54%) the analyte showed moderate or large alterations (Glass’s
Δ > 0.2 in magnitude). Of these 353, 90% showed a concordant
effect direction between PRS and disease cases (positively cor-
related with genetic risk and elevated in disease cases, or nega-
tively correlated with genetic risk and diminished in disease
cases), while only 10% were discordant (binomial P = 2 × 10−56;
Fig. 2D). This broad concordance suggests that even individuals
who have not yet transitioned to frank disease, or never will, still
harbor disease-risk–associated signatures that are broadly de-
tectable in the blood. The concept of PRS-associated analytes as
presymptomatic disease alterations suggests avenues that could
prevent high-risk individuals from transitioning to disease in the
first place.
Our catalog of PRS–analyte associations includes many analyte–

disease relationships with strong literature support (Table 1). These
include the positive correlations of BMI with leptin (the strongest
correlation across all traits and analytes), systemic inflammation
(C-reactive protein, IL-6), and insulin resistance (insulin, HOMA-IR,
HbA1C); chronic kidney disease with creatinine and potassium;
coronary artery disease with low-density lipoprotein (LDL) choles-
terol; depression with inflammation and excitatory neurotransmis-
sion; and type 2 diabetes with glucose, insulin, and HbA1C.
Several PRS–analyte associations in Table 1 point to known

therapeutic strategies. The strongest proteomic association with
coronary artery disease was PCSK9, the target of the LDL-
lowering drugs alirocumab and evolocumab. The sole associa-
tion of the cytokine IL-33 was a positive correlation with genetic
risk for asthma. The IL33 locus is a GWAS hit for asthma (29),
and a loss-of-function splice variant in IL33 is associated with

halved asthma risk (17); multiple monoclonal antibodies tar-
geting IL-33 are under development for asthma (30).
A particularly interesting class of associations consists of

analytes known to be dysregulated among individuals prior to
disease onset. Perhaps the best-known example is HbA1C, one
measurement defining prediabetes and a strong risk factor for dia-
betes (31). A more subtle example is the metabolite 1-stearoyl-2-
docosapentaenoyl-GPC, also known as phosphatidylcholine
(18:0/22:5), which is negatively correlated with celiac disease
polygenic risk. In a longitudinal cohort, plasma levels of phos-
phatidylcholines were lower by age 3 mo among children who
eventually developed celiac disease at a median age of 4.8 y (23).
These examples further support the notion that correlations with
genetic risk may capture dysregulation that occurs prior to
disease onset.

Noncanonical Disease–Analyte Associations
A large fraction of PRS–analyte associations are not canonically
known; many are mechanistically plausible (Table 2). Several
classes of these associations are of particular interest.
First, cognitive traits had a particular abundance of PRS–

analyte associations. Intelligence, cognitive performance, and
educational attainment were variously associated with total Ω-3s
(as well as 10 esters of the Ω-3 fatty acid DHA, mainly phos-
pholipids), leptin, platelet-derived growth factor A (PDGFA),
PCSK9, the LDL receptor LDLR, IL-6, the adipocytokine PAI-1
(encoded by SERPINE1), and adenosine 5′-monophosphate
(AMP). Notably, all correlations were negative (higher analyte
levels were associated with impaired cognition), with the

Table 1. Selected literature-supported PRS–analyte associations

Trait Analyte Type Sign Notes

Ankylosing spondylitis Globulin P + Levels elevated in ankylosing spondylitis (16) and other
autoimmune diseases

Asthma IL-33 P + IL-33’s only association; loss-of-function variant in IL33
associated with halved asthma risk (17)

BMI CRP, IL-6 L/P + Obesity associated with systemic inflammation and elevated
CRP and IL-6 (18, 19)

Insulin, HOMA-IR, HbA1C L + Obesity associated with insulin resistance (20)
Leptin P + Strongest proteomic hit for BMI; obesity characterized by

elevated leptin levels, leptin resistance (21)
SERPINE1 P + a.k.a. PAI-1; adipocytokine overexpressed in obesity (22)

Celiac disease 1-stearoyl-2-docosapentaenoyl-GPC M − a.k.a. phosphatidylcholine (18:0/22:5); in a longitudinal cohort,
plasma phosphatidylcholine levels were lower by age 3 mo
among children who eventually developed celiac disease (23)

Chronic kidney disease eGFR L − Calculated measure of kidney function based on age, sex,
ethnicity, and creatinine levels

Creatinine, potassium L + Buildup in the blood when kidneys work less efficiently
Cognitive performance, EA,

intelligence
Total Ω-3 L + Ω-3 supplementation may improve cognition in young adults,

although evidence is mixed (24)
Coronary artery disease LDL, small LDL, LDL particle #,

PCSK9
L/P + PCSK9 (along with leptin, likely a proxy for BMI) is the sole

proteomic association with CAD
Depression Glutamate M + Third strongest depression hit; serum levels are elevated in

depression and other psychiatric disorders (25)
IL-18, IL18R1 P/L + Serum levels of IL-18 (proinflammatory cytokine) are elevated

in moderate-to-severe depression (26)
GH1 P − 61% of growth hormone-deficient adults had symptoms of

atypical depression (27)
Male pattern baldness androstenediol disulfate M + Precursor to dihydrotestosterone (DHT), which stimulates hair

loss in male pattern baldness
Prostate cancer 16α-hydroxy DHEA 3-sulfate M − Precursor of estriol; estrogen therapy used to treat prostate

cancer due to its antiandrogenic activity
Type 1 diabetes IL2RB P + IL-2 and its receptor play a central role in type 1 diabetes (28)
Type 2 diabetes Glucose, HbA1C L + The two strongest T2D associations

In all cases, directions (+/−) match the literature. Analyte types are denoted L (clinical labs), P (proteins), and M (metabolites). EA = educational attainment.
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exception of those related to Ω-3s. Leptin, PDGFA, PCSK9/
LDLR, CRP, and insulin, respectively, support the notions that
obesity (42), hypertension (43), coronary artery disease (44),
systemic inflammation (45), and insulin resistance (46) are

associated with impaired cognition. [PDGFA is a platelet-
derived growth factor elevated in mild hypertension (56).]
Plasma levels of PAI-1 have been found to be higher in indi-
viduals with Alzheimer’s and mild cognitive impairment (MCI)

Table 2. Selected noncanonical PRS–analyte associations

Trait Analyte Type Sign Notes

Allergic disease Vanillylmandelate M + Catecholamine metabolite; although epinephrine is famously used
to treat anaphylaxis, basal norepinephrine levels are also several-
fold increased in severe atopic eczema (32)

ALS IL-13 P + IL-13+ helper and killer T cells are more abundant in ALS and
positively correlate with progression (33)

Total Ω-3, EPA, DHA L + Ω-3 supplementation hastened and Ω-6 delayed
neurodegeneration in an ALS mouse model (34)Total Ω-6 L −

Atrial fibrillation Pyridoxal M − Metabolite of pyroxidine (vitamin B6), previously found to be
inversely associated with nonvalvular atrial fibrillation (35)

Celiac disease CCL13 P + Involved in recruitment and activation of specific immune cell types
to inflamed tissues; implicated in several other autoimmune and
inflammatory diseases (36)

CXCL10 P + Appears to be involved in immune cell recruitment into the small
intestine in celiac disease (37)

Chronotype 4-hydroxyphenyl acetylglutamine M + Precursor to dopamine and norepinephrine (via tyrosine), which
have wakefulness-promoting effects

Cognitive performance AMP (adenosine 5′-monophosphate) M − Product of PDE-mediated degradation of cAMP; PDE inhibitors
improve cognition in animal models (38)

Crohn’s disease TIMP4 P − Serum TIMP4 levels two thirds lower in Crohn’s disease and
ulcerative colitis patients than healthy controls (39)

Educational attainment SERPINE1 P − Plasma levels elevated in Alzheimer’s and MCI (40); loss-of-function
variant associated with lifespan (41)

LEP, PDGFA, PCSK9, LDLR, CRP,
insulin

P/L − Obesity (42), hypertension (43), CAD (44), systemic inflammation
(45), and insulin resistance (46) harm cognition; LEP and insulin
(along with IL-6, another marker of systemic inflammation) also
intelligence hits

DHA esters M + 10 of 36 EA-associated metabolites are esters of the Ω-3 fatty acid
DHA: 5 glycerophosphocholines (GPCs), 3
glycerophosphoethanolamines (GPEs), docosahexaenoylcholine,
docosahexaenoylcarnitine

Height Dihydrothymine M + Precursor to the DNA base thymine
Nerve growth factor P + Though a growth factor, does not appear to have been linked to

height in the literature
NOTCH3 P + Loss-of-function variants in NOTCH3 cause Lehman syndrome,

which includes short stature and connective tissue abnormalities (47)
Placental growth factor P + Low maternal serum levels of which predict small for gestational

age pregnancy (48)
Intelligence IGFBP1 P + Strongest intelligence hit; deficits associated with insulin resistance,

diabetes, cardiovascular disease; mouse overexpression improves
insulin sensitivity, lowers blood pressure, reduces atherosclerosis (49)

Parental extreme longevity LIF P − Pleiotropic cytokine involved in inhibition of differentiation,
oncogenesis, and HPA axis stimulation

ceramide (d16:1/24:1, d18:1/22:1) M − Deletion of the ceramide synthase LAG1 in yeast increases lifespan
by 50% (50)

Primary sclerosing
cholangitis

4-cholesten-3-one M − Bile acid precursor (primary sclerosing cholangitis affects the bile
ducts)

Rheumatoid arthritis PI3 P + a.k.a. elafin; protease inhibitor that mediates the innate immune
response; elevated in serum of RA patients (51)

Systolic blood pressure CASP3, CASP8 P + Key apoptotic enzymes; hypertension associated with cardiac
hypertrophy and apoptosis (52). Caspase-3 is also a hit for
diastolic blood pressure

Systemic lupus
erythematosus

MMP9 P + Strongest hit for lupus. Serum MMP-9 levels were elevated in lupus
patients with neuropsychiatric manifestations, compared to
other lupus patients and healthy controls (53)

Ulcerative colitis trimethyllysine M − Carnitine precursor; propionyl-l-carnitine is an effective treatment
for ulcerative colitis (54)

1-methylhistidine M − Half as abundant in the urine of IBD patients compared to healthy
controls (55)

Analyte types are abbreviated as in Table 1.
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than healthy controls (40); perhaps relatedly, a loss-of-function
variant in SERPINE1 is associated with increased human life-
span (41). Among other roles, AMP is a degradation product of
cAMP by phosphodiesterases (PDEs); PDE inhibitors improve
cognition in animal models and have been proposed as procog-
nitive therapeutics in humans (38).
Second, several analytes were associated with genetic risk for

amyotrophic lateral sclerosis (ALS), a progressive and still
largely mysterious neurodegenerative disease. Going against the
common perception that Ω-3 fatty acids are “healthy” and Ω-6s
are “unhealthy,” we counterintuitively found that Ω-3 levels were
elevated, and Ω-6 levels diminished, in individuals at high genetic
risk for ALS. Supporting this association, Ω-6s delayed disease
progression in a mouse model of ALS, while Ω-3 supplementa-
tion hastened progression (34), suggesting dietary modulation of
Ω-3 and Ω-6 fatty acids may be a useful therapeutic strategy for
ALS. [Conversely, an observational epidemiological study found
an inverse correlation between Ω-3 intake and ALS risk, and a
nonsignificant correlation with Ω-6 intake (57).] ALS genetic risk
is also positively correlated with IL-13, its sole proteomic asso-
ciation: IL-13+ helper and killer T cells have been shown to be
more abundant in ALS patients than controls and to positively
correlate with progression (33). At least three anti–IL-13
monoclonal antibodies (anrukinzumab, lebrikizumab, and tralo-
kinumab) are currently under development for asthma and
atopic dermatitis (58); our results support further investigation
of these antibodies as potential ALS therapies.
Third, exactly one protein, leukemia inhibitory factor (LIF),

and one pair of metabolites sharing a mass spectrometry peak,
ceramides d16:1/24:1 and d18:1/22:1, were associated with the
PRS for parental extreme longevity (maternal age at death ≥98 y
and/or paternal age at death ≥ 95 y), and both are negatively
correlated. LIF is a pleiotropic cytokine broadly involved in the
inhibition of cellular differentiation; LIF overexpression has
variously been shown to promote the development and metas-
tasis of solid tumors (opposite to its namesake effect on leuke-
mia) (59), inhibit neurogenesis (60) and induce thymic atrophy
(61). Serum LIF levels are elevated during both acute and
chronic inflammation, and LIF injection stimulates the
hypothalamic–pituitary–adrenal (HPA) axis, a possible mecha-
nism by which LIF could modulate aging (62). Our results sup-
port clinical investigation of the anti-LIF monoclonal antibodies
D25.1.4 and D62.3.2, which have over a 25-y track record of use
in basic biology research (63), for aging-related diseases.
Ceramides, a class of sphingolipids, play a role in cellular se-

nescence (64), and deletion of the ceramide synthase LAG1 in
yeast increases longevity by 50% (50); therapeutic interventions
targeting sphingolipid metabolism have been suggested for
neurodegenerative disorders (65). Notably, all ceramides in our
metabolomics panel had negative correlations with parental ex-
treme longevity polygenic risk [P = 0.0003–0.1, ACAT (66)
combined P = 0.001; Dataset S6], strongly suggesting ceramides
as a class, not only ceramides d16:1/24:1 and/or d18:1/22:1, are
associated with genetic predisposition to extreme longevity.
While broad-spectrum ceramide synthase inhibitors such as
fumonisins are associated with substantial toxicity in humans,
inhibition of specific ceramide synthases (67) or downstream
enzymes could represent viable therapeutic strategies.

Future Prospects
Our use of blood measurements in this study was motivated by
greater accessibility compared to other disease-relevant tissues in
living individuals (68). The use of blood as a proxy tissue is not as
much of a limitation as it might first appear, since proteins from
other tissues frequently make their way into the blood. For in-
stance, even with a highly stringent filter of being specifically
expressed in exactly one nonblood tissue (according to the Hu-
man Protein Atlas and the Genotype-Tissue Expression Project;

Methods), we saw four examples among our PRS-associated
proteins: AMBP (liver), FABP6 (small intestine), GH1 (pitui-
tary), and NT-proBNP (heart muscle). As we have previously
argued (69), blood is a surprisingly valuable window into health
and disease.
Many expected PRS–analyte associations are missing, often

due to lack of power. TGFβ, a canonical tumor suppressor which
also contextually promotes cancer progression (70), had only a
marginally significant negative correlation with the breast cancer
PRS (P = 0.04, FDR = 46%) and a nonsignificant correlation
with the PRS for prostate cancer, the other cancer tested. Al-
though PCSK9 was associated with coronary artery disease
(CAD), it was not associated with stroke (P = 0.3) despite the
known protective effect of loss-of-function PCSK9 variants on
stroke (71). Allergic disease genetic risk had no significant pro-
teomic associations, but among the 20 proteins with marginally
significant (P < 0.05) associations were the immune-related
proteins HSPB1 (P < 0.003), CEACAM8/CD66b (P < 0.004),
BOC (P < 0.007), ACP5 (P < 0.009), CCL24 (P < 0.01),
FCGR2B (P < 0.01), DLK1 (P < 0.01), MERTK (P < 0.02),
EGFR (P < 0.02), TNSSF13B (P < 0.03), AXL (P < 0.03), XCL1
(P < 0.03), IL-4 (P < 0.04), MMP9 (P < 0.04), IL1R2 (P < 0.04),
OSM (P < 0.04), and IL-6 (P < 0.05). Also missing were the vast
majority of proteins and metabolites not among the few hundred
profiled. Expanding the suite of analytes and individuals mea-
sured and broadening the cohort’s ethnic and socioeconomic
diversity to be more representative of the general population
should dramatically increase the biological insights attainable by
the analyte–PRS correlation approach outlined here.
Of course, not every disease–analyte correlation ought to ap-

pear as a PRS–analyte correlation. Indeed, this can distinguish
true risk factors from mere consequences of disease. For in-
stance, we would not expect troponins, a class of proteins (not
included in our panel) released into the blood in response to
heart injury, to be dysregulated among people at high genetic
risk of coronary artery disease who have never had a heart at-
tack. Similarly, although HbA1C is substantially higher in type 1
diabetes cases than controls (Glass’s Δ = 2.8), it does not sig-
nificantly correlate with polygenic risk for type 1 diabetes (P =
0.8), reflecting the autoimmune origin of the disease. Similarly,
we might expect plasma levels of medications for a disease, or
their downstream perturbations on the metabolome and pro-
teome, to correlate with disease status but not polygenic risk.
The subset of disease–analyte correlations that also correlate
with polygenic risk are likely to be better therapeutic targets for
prevention than analytes that are only dysregulated after the
disease manifests.
That said, PRS–analyte correlations may still not represent

bona fide causal influences of the analyte on the disease. As
mentioned earlier, noncausal “proxy” analytes may correlate
with causal analytes and thus also correlate with polygenic risk.
One way this can happen is horizontal pleiotropy, whereby var-
iants in the PRS causally influence the levels of multiple analytes,
only some of which causally influence the trait. Bias in the PRSs
themselves, for instance due to population structure or imperfect
linkage between the true causal variants and the variants in-
cluded in the PRS, could also theoretically lead to false-positive
(or indeed false-negative) correlations.
In sum, our analysis of the multiomic correlates of genetic risk

suggests that individuals at high genetic risk for a trait display
dysregulation in many of the same analytes dysregulated in frank
disease, as we would predict, and that this signature of dysre-
gulation is frequently detectable in the blood. Our results un-
derscore the concept that polygenic risk scores, far from being a
mere statistical tool for disease risk stratification, also reflect
underlying disease biology. Our ability to discover hundreds of
significant disease–analyte associations from a cohort of only a
few thousand people, most without severe disease, exemplifies
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the utility of studying genetic risk in multiomics cohorts: since
genetic risk scores can be computed for any genome, every
person’s data are potentially relevant to the study of the pro-
dromal states of many diseases. Applying this approach to the
next generation of population-scale multiomics studies offers the
promise of discovering therapeutically relevant mechanistic in-
sights across the spectrum of human health and disease.

Methods
Cohort and Dataset. The cohort used in this study consists of participants in the
Arivale Scientific Wellness program (Arivale, Inc.) from 2015 to 2019 with self-
reported white ancestry who gave informed consent for the use of their
deidentified data for scientific research. Within this cohort, genetic data
were ascertained through either whole-genome sequencing (n = 2,138) or
Illumina MEG single nucleotide polymorphism (SNP) microarray genotyping
(n = 1,500) from WuXi Nextcode; proteomic, metabolomic, and clinical
laboratory measurements were ascertained as described in Wilmanski et al.
(72). Unknown metabolites (denoted by IDs starting with “X -”) were ex-
cluded from the analysis.

Polygenic Risk Score Generation. GWAS summary statistics for the 54 traits
used in this study were downloaded from the GWAS Catalog (13); the traits,
studies, and summary statistics URLs are provided as Dataset S1. Summary
statistics were first filtered to the variants present in the imputed genomes
from the cohort. Summary statistics were then harmonized with 1000 Ge-
nomes Phase 3 (73) with respect to reference/alternate allele and strand,
using the allele harmonization framework from munge_sumstats.py in the
ldsc software package (74); ambiguous variants (A/T, C/G, G/C, and T/A) were
excluded. Summary statistics were then subset to P < 1 × 10−3, and P value-
informed linkage disequilibrium (LD) pruning to r2 > 0.2 in 1000 Genomes
Phase 3 was then performed by using the “--indep-pairwise 500kb 0.2” flags
to the plink v2.00 software package (75) and, to ensure the SNP with the
higher P value is always the one pruned, specifying a dummy allele fre-
quency file using the “--read-freq” flag with allele frequencies equal to 0.5 +
p/2. The variants that remain, after this filtering and LD pruning, constitute
the trait’s polygenic risk score, with the variants’ effect sizes (beta coeffi-
cients for quantitative traits or log odds ratios for case–control studies)
constituting the weights of the risk score. Finally, polygenic risk scores were
scored on each individual in the study cohort by summing up the published
effect size for each variant in the PRS, multiplied by the number of effect
alleles the individual carried for that variant; missing genotypes were mean
imputed using the effect allele frequency.

Correlations with Polygenic Risk. Since genetic risk is non-time-varying, lon-
gitudinal analyte data were collapsed by taking the median across time
points. Temporal covariates (weekday, month, season) were specified only
for individuals where they agreed across all time points and otherwise set to
missing. Analytes with more than 10% missingness across individuals and
individuals with self-reported nonwhite ancestry (East Asian, Hispanic Latino
or Spanish origin, South Asian, Ashkenazi Jewish, Black or African-American,

Asian, Middle Eastern or North African, Native Hawaiian or other Pacific
Islander, Sephardic Jewish, American Indian or Alaska Native, Afro-
Caribbean, or Other) were prefiltered from the analysis. Missing analyte
values were then imputed from nonmissing individuals using the average of
the five nearest neighbors (sklearn.impute.KNNImputer in Python), and
analytes where more than half of individuals had the same value after im-
putation were filtered out. Analytes, PRSs, and covariates were then shifted
and scaled to have mean 0 and variance 1 across points in their interquartile
range (sklearn.preprocessing.RobustScaler in Python). Association testing
was then performed for each analyte–PRS pair via multilinear robust linear
regression with M-estimation (statsmodels.robust.robust_linear_model.RLM
in Python), with the analyte’s abundance as the dependent variable and the
PRS as the independent variable, including as covariates age at the first time
point, sex, US state, weekday, month, season, whether the individual had
whole-genome sequencing or genotyping array data, and the top eight
genotype principal components across individuals. For each analyte type,
only individuals with both DNA sequence data and abundances for that
analyte type were included in the regression.

Glass’s Δ Calculation. Glass’s Δs were calculated by 1) regressing each analyte
on the covariates mentioned above, across individuals, 2) subtracting the
predictions from the measured analyte values, and 3) computing, on this
residualized data, the difference in mean analyte abundances between cases
and controls, divided by the sample SD in controls.

Tissue Specificity Analysis. Of the 136 proteins that correlate with at least 1
PRS, 15 were listed as “tissue-enriched” (at least fourfold higher mRNA level
in a particular tissue than in any other tissue; www.proteinatlas.org/
humanproteome/tissue/tissue+specific) according to the Human Protein At-
las (76): AGER, AMBP, AZU1, CCL19, FABP6, GH1, IL13, IL22RA1, IL4, LTA,
MMP10, NT-proBNP (NPPB), PGF, SERPINA12, SLAMF1. Manual inspection of
expression profiles in the Genotype-Tissue Expression Project (68) (e.g.,
https://gtexportal.org/home/gene/AGER) revealed that only seven appeared
truly tissue-specific; of these, the adipokine SERPINA12 (skin) and cytokines
IL13 (testis) and LTA (appendix) have known roles in adipose or immune cell
types. This left the four tissue-specific proteins mentioned in the main text:
AMBP (liver), FABP6 (small intestine), GH1 (pituitary), and NT-proBNP
(heart muscle).

Data Availability. All study data are available upon request. URLs for the
summary statistics in the GWAS catalog used to calculate the 54 polygenic risk
scores are listed in Dataset S1.
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